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Suppl. Figure S1. 3-nitrotyrosine-positive proteins are increased by both hypertension 

and noise exposure and further aggravated in the presence of both stressors. (A) 

Densitometry and representative dot blot of 3-nitrotyrosine (3NT)-positive proteins in plasma 

denoting nitro-oxidative stress. This may be a consequence of peroxynitrite formation and/or 

enhanced myeloperoxidase (MPO) expression and higher hydrogen peroxide levels in 

activated immune cells leading to MPO/H2O2/nitrite-catalyzed nitration of tyrosine residues. 

(B) Representative pictures (for at least 4 images per group) of immunohistochemical 

stainings for 3-nitrotyrosine in aortic sections. Magnification 40x, scale bars represent 50 µm. 

Data in (A) are box and whiskers (with min/max) from at least 8 animals per group. Kruskal-

Wallis non-parametric test with Dunn’s multiple comparison test; *P < 0.05 vs. untreated 

controls; #P < 0.05 vs. +Noise; $P < 0.05 vs. +ATII. 
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Suppl. Figure S2. NOX2 mRNA expression in the aorta is increased by both 

hypertension and noise exposure and by trend aggravated in the presence of both 

stressors. Expression of NOX2 was measured by quantitative rtPCR as a source of ROS in 

response to ATII and noise treatment. Data points are measurements from at least 6 animals; 

1-way ANOVA with Tukey’s multiple comparison test; *P < 0.05 vs. untreated controls.  
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Suppl. Figure S3. Monocyte chemotactic protein-1 (MCP-1) expression in the aorta is 

aggravated in the presence of combined hypertension and noise exposure. Expression of 

MCP-1 protein (A) was determined by Western blotting (representative Western blots below 

the densitometry) and of MCP-1 mRNA (B) was measured by quantitative rtPCR as a marker 

of monocyte activation. Data points are measurements from at least 6 (A) and 9 (B) animals; 

1-way ANOVA with Tukey’s multiple comparison test (A) and Kruskal-Wallis non-

parametric test with Dunn’s multiple comparison test (B); *P < 0.05 vs. untreated controls; #P 

< 0.05 vs. +Noise.  
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Suppl. Figure S4. Evidence for enhanced structural and antioxidant changes in response 

to combined hypertension and noise exposure in the heart. (A-D) Expression of proteins 

of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a), mitochondrial manganese-

superoxide dismutase (MnSOD), phospho-S325/328/330-connexin 43 (pS325-Cx43) and 

connexin 43 (Cx43) was determined by Western blotting (two representative Western blots 

are shown below the densitometry). Protein loading was normalized to vinculin. Data points 

are measurements from at least 5 samples/group (each pooled from 2-4 mice); 1-way 

ANOVA with Tukey’s multiple comparison test.  
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Suppl. Figure S5. Evidence for potentiated structural and metabolic changes in response 

to combined hypertension and noise exposure in the kidney. (A-E) Expression of genes of 

uncoupling protein 3 (UCP-3), parathormone-related protein (PTHRP), matrix 

metalloproteinase 12 (MMP12) and arginase 2 (ARG2) was determined by quantitative 

rtPCR. Data points are measurements from at least 4 samples/group (each pooled from 2-4 

mice); 1-way ANOVA with Tukey’s multiple comparison test (B, C) and Kruskal-Wallis with 

Dunn’s comparison test (A, D); *P < 0.05 vs. untreated controls; #P < 0.05 vs. +Noise.  
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Suppl. Figure S6. Gating strategy for FACS analysis presented in Figure 4 in the main 

manuscript.  
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Suppl. Figure S6.  Workflow of the GFAP analysis for astrocyte activation in the brain. 
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2. Extended Materials and Methods 

2.7 Isometric tension studies 

 Aortas were dissected from the animal and cleaned of perivascular fat. 4-mm 

segments of thoracic aortas were cut and mounted on force transducers within the organ bath 

chamber. The rings were pre-constricted using prostaglandin F2α to yield approximately 80% 

of the maximal tone induced by KCl bolus. Concentration-relaxation curves in response to 

increasing concentrations of acetylcholine (ACh) and nitroglycerine (GTN) were performed 

as previously described [1, 2]. 

 

2.8 Immunohistochemical staining of aortic rings 

 Aortic segments with adventitia and perivascular fat were fixed in 4% 

paraformaldehyde and embedded in paraffin. As previously described [3], these samples were 

cut into sections of 5µm thickness. Samples were deparaffinized and blocked with normal 

horse blocking solution (Vector) and stained with a primary antibody against either 

endothelin-1 (Abcam #117757: 1:1000) or 3-nitrotyrosine (Millipore #06-284: 1:200) and 

biotinylated with a secondary antibody (Thermo Fisher Scientific, Waltham, MA). ABC 

reagent (Vector) was used for immunochemical detection and DAB reagent (peroxidase 

substrate kit, Vector) as a substrate. Image ProPlus 7.0 (Media Cybernetics, Rockville, MD) 

was used to quantify the images as a % of stained area.  

 

2.9 Detection of oxidative stress in plasma, whole blood, cardiac tissue or mitochondria, 

brain and aorta  

Dihydroethidium (1µM)-dependent fluorescence microtopography was used to 

determine the vascular and cortical ROS formation in cryo-sections of the aorta and prefrontal 

cortex, as described [4, 5]. To investigate the involvement of eNOS uncoupling in ROS 

production and endothelial dysfunction, aortic rings were incubated with the NOS inhibitor L-
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NAME (0.5mM) and red fluorescence of DHE oxidation products was only quantified in the 

endothelial cell layer [4-6]. ROS-derived red fluorescence was detected using a Zeiss 

Axiovert 40 CFL microscope, Zeiss lenses, and Axiocam MRm camera. 

Protein tyrosine nitration was detected using a specific antibody for 3-nitrotyrosine 

(3NT, 1:1,000, Upstate Biotechnology, MA, USA) and lipid peroxidation using a specific 

antibody for 4-hydroxynonenol (4HNE)-positive proteins (1:5,000, Millipore, MA, USA) in 

EDTA plasma, as described [7, 8]. 1µl (0.5µg protein) of the EDTA plasma was transferred to 

each well of a Protran BA85 (0.45µm) nitrocellulose membrane (Schleicher&Schuell, Dassel, 

Germany) via a Minifold I vacuum Dot-Blot system (Schleicher&Schuell, Dassel, Germany). 

Each slot was washed twice with 200µl PBS before and after protein transfer. The membrane 

was dried for 60min at 60°C. Positive bands were detected by enhanced chemiluminescence 

after incubation with a peroxidase-coupled secondary antibody (goat anti-rabbit and goat anti-

mouse, 1:10,000) (Vector Laboratories, CA, USA). All incubation and washing steps were 

performed according to the manufacturer’s instructions. Densitometric quantification of the 

dots was performed using the Super Signal ECL kit from Thermo Scientific and a ChemiLux 

Imager (CsX-1400M, Intas, Göttingen, Germany) with Gel-Pro Analyzer software (Media 

Cybernetics, Bethesda, MD). 

Oxidative stress from superoxide was also measured by a modified HPLC-based 

method to quantify 2-hydroxyethidium levels as previously described [5, 9, 10]. Briefly, 

tissue of aorta, heart, or frontal cortex was incubated with 50µM DHE for 30min at 37°C in 

PBS buffer. Tissues were homogenized in 50% acetonitrile/ 50% PBS using a glass 

homogenizer (heart and brain frontal cortex) or pulverized in a mortar under liquid nitrogen 

and resuspended in homogenization buffer (aorta), centrifuged and 50µl of the supernatant 

were subjected to HPLC analysis. The system consisted of a control unit, two pumps, mixer, 

detectors, column oven, degasser and an autosampler (AS-2057 plus) from Jasco (Groß-
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Umstadt, Germany) and a C18-Nucleosil 100-3 (125x4) column from Macherey & Nagel 

(Düren, Germany). A high pressure gradient was employed with acetonitrile and 50mM 

citrate buffer pH 2.2 as mobile phases with the following percentages of the organic solvent: 

0min, 36%; 7min, 40%; 8-12min, 95%; 13min, 36%. The flow was 1ml/min and DHE was 

detected by its absorption at 355nm whereas 2-hydroxyethidium was detected by fluorescence 

(Ex. 480nm/Em. 580nm). 

Mitochondrial oxidative stress and superoxide was measured by a modified HPLC-

based method to quantify triphenylphosphonium-linked 2-hydroxyethidium (2-OH-mito-E+) 

levels as previously described [11, 12]. Briefly, cardiac tissues underwent homogenization in 

HEPES buffer (composition in mM: 50 HEPES, 70 sucrose, 220 mannitol, 1 EGTA (ethylene 

glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid), and 0.033 bovine serum albumin) 

and centrifugation at 1,500g for 10 min at 4°C, followed by another centrifugation step of the 

supernatant at 2,000g for 5 min (pellets were not used). Next, centrifugation of the 

supernatant at 20,000g for 20 min was applied, the pellet was collected and a suspension in 1 

ml of HEPES buffer was prepared. The suspension was centrifuged again at 20,000g for 20 

min, but this time a suspension of the pellet was prepared in 1 ml of Tris buffer (composition 

in mM: 10 Tris, 340 sucrose, 100 KCl, and 1 EDTA). The resulting mitochondria-enriched 

suspensions containing 5–10 mg/ml of total protein (according to Lowry assay) were kept at 

0°C, were all adjusted to a similar protein content (based on the lowest determined 

concentration) and were further diluted in 0.5 ml of PBS buffer containing mitoSOX (5 µM) 

(final protein concentration: 0.1 mg/ml) and then incubated for 15 minutes at 37 °C. After the 

incubation step 50 v/v% of acetonitrile was added in order to destroy the mitochondrial 

membrane and extract the mitoSOX oxidation products, samples were subjected to 

centrifugation and the resulting supernatant was subjected to HPLC analysis (100 µl per 

sample injection). The HPLC system was purchased from Jasco (Groß-Umstadt, Germany) 
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with a typical composition (control unit, two pumps for high pressure gradient, high pressure 

mixer, UV/Vis and fluorescence detectors, and an autosampler (AS-2057 plus with 4 °C 

cooling device). Generation of gas bubbles from the solvents that can cause an unstable 

detection baseline were prevented using a degasser unit. . For separation of the product and 

reactant mixtures, a reversed-phase column was used (C18-Nucleosil 100-3 (125x4), 

Macherey & Nagel, Düren, Germany). Optimal separation was achieved by application of a 

high pressure gradient with acetonitrile as the organic/nonpolar component and citrate buffer 

as the aqueous/polar component (50 mM, pH 2.2) of the mobile phase. The following 

percentages of the organic solvent were applied: 0 min, 22 %; 10 min, 50 %; 22min, 63 %; 

23-25 min, 100 %; 25-27 min, 22%. The flow was 0.5 ml/min and mitoSOX was detected by 

its absorption at 360 nm whereas mitoE+ and 2-OH-mito-E+ were detected by fluorescence 

(Ex. 500 nm/Em. 580 nm). 

 

2.10 S-glutathionylation of endothelial nitric oxide synthase by immunoprecipitation 

Immunoprecipitation of eNOS and subsequent immunoblotting of the precipitate for 

S-glutathionylation was performed according to a standard protocol as previously published 

[13, 14]. M-280 sheep anti-mouse IgG coated beads from Invitrogen (Darmstadt, Germany) 

were used along with a monoclonal mouse eNOS (Biosciences, USA) antibody. The beads 

were loaded with the eNOS antibody and cross-linked according to the manufacturer’s 

instructions. Next, aortic homogenates were incubated with the eNOS antibody beads, 

precipitated with a magnet, washed and transferred to a 7.5% SDS-PAGE gel and treated with 

a standard non-reducing Western blot procedure using an antibody against S-glutathionylated 

proteins (mouse monoclonal, 1:1,000, Virogen, Watertown, MA, USA) at a dilution of 

1:1,000 under non-reducing conditions. After stripping of the membrane, the bands were 

immunoblotted for eNOS (mouse monoclonal, 1:1,000, BD Biosciences, USA) for 
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normalization. Detection and quantification were performed by enhanced chemiluminescence 

(ECL) with peroxidase conjugated anti–mouse (1:10,000, Vector Lab., Burlingame, CA) 

secondary antibodies. Densitometric quantification of antibody-specific bands was performed 

as described above for dot blot analysis. 

 

2.11 Western Blotting Analysis of Other Proteins 

Western blotting procedure for aortic tissue was similar to those described in the 

immunoprecipitation procedure and as reported previously [7, 8]. Protein samples were 

analyzed for NADPH oxidase 2 (gp91phox, mouse monoclonal, 1:1,000, BD Biosciences, 

USA), phospho-Ser1177-eNOS (rabbit polyclonal, 1:1,000, Cell Signaling, Danvers, MA, 

USA), phospho-Ser239-VASP (mouse monoclonal, 1.5μg/ml, Millipore, Billierica, MA, 

USA), heme oxygenase-1 (HO-1, mouse monoclonal, 1:10,000, Abcam, Cambridge, MA, 

USA), monocyte chemotactic protein-1 (MCP-1, polyclonal, 1:500, Bio-Rad Laboratories 

GmbH, Germany) and monoclonal mouse α-actinin or polyclonal rabbit β-actin (both 1:2,500, 

Sigma-Aldrich) for normalization of loading and transfer. Goat anti-mouse and goat anti-

rabbit peroxidase-coupled secondary antibodies (1:10,000, Vector Laboratories, CA,USA) 

were used for the detection of positive bands along with ECL development, as described in 

the dot blot and immunoprecipitation procedure. 

Western blot analysis on mouse cardiac tissue samples was performed as described 

previously [15]. Mouse total cardiac tissue samples were lysed in 1× Cell lysis buffer (Cell 

Signaling Technology, Danvers, MA, USA) supplemented with 1× PhosStop and Complete 

protease inhibitors (Roche, Basel, Switzerland) as well as 1 µM neocuproine. Protein 

concentration was assessed with Lowry’s assay (Thermo Fisher Scientific, Waltham, MA, 

USA). Protein samples (15 µg/sample) were electrophoretically separated on 10% Bis/Tris 

gels and were transferred to nitrocellulose membranes. After blocking, membranes were 
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incubated with the following primary antibodies: anti-Cx43 (1:1000; rabbit polyclonal, 

C6219, Sigma, St. Louis, MO, USA), anti-Cx43 S325/328/330 (1:2000, mouse monoclonal, 

kindly provided by Paul D. Lampe, Seattle, USA), anti-sarcoplasmic/endoplasmic reticulum 

calcium ATPase 2a (SERCA2A; mouse monoclonal, 1:1000; S1314, Sigma), anti-MnSOD 

(rabbit polyclonal, 1:1000, 06-984, Millipore), anti-Vinculin (mouse monoclonal, 1:1000, 

V9131, Sigma). After washing and incubation with the respective secondary antibodies (goat-

anti rabbit or horse-anti mouse peroxidase-coupled, Cell Signaling), signals were detected 

with enhanced chemiluminescence  (SuperSignal West Femto Chemiluminescent Substrate, 

Thermo Fisher Scientific, Waltham, MA, USA), visualized by Chemidoc XRS+ gel 

documentation system (Bio-Rad, Hercules, CA, USA) and analyzed by ScionImage software 

(Scion Corporation, Frederick, MD, USA). 

 

2.12 Quantitative reverse transcription real-time PCR (qRT-PCR) 

Total mRNA from aortic tissue was isolated using the acid guanidinium thiocyanate-

phenol-chloroform extraction method. 50ng of total RNA was used for quantitative reverse 

transcription real-time PCR (qRT-PCR) analysis using QuantiTect Probe RT-PCR kit 

(Qiagen) as described previously [3, 16]. Primer-probe-mixes purchased from Applied 

Biosystems (Foster City, CA) were used to analyze the mRNA expression patterns of 

NADPH oxidase 2 (NOX-2 Mm00432775_m1), monocyte chemoattractant protein 1 (MCP-1, 

Mm00441243_g1), cluster of differentiation 68 (CD68, Mm00839626_m1), vascular cell 

adhesion protein 1 (VCAM-1, Mm00449197_m1), plasminogen activator inhibitor-1 (PAI-1, 

Mm00435860_m1) and normalized on the TATA box binding protein (TBP, 

Mm_00446973_m1) as an internal control. For quantification of the relative mRNA 

expression the comparative ΔΔCt method was used. Gene expression of target gene in each 

sample was expressed as the percentage of unexposed wild type. 
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Total RNA from kidneys was extracted from renal tissue using peqGOLD TriFast 

(Peqlab, Biotechnologie GmbH, Erlangen, Germany) according to the manufacturer’s 

protocol. To remove genomic DNA contamination, RNA samples were treated with 1 U 

DNase/µg RNA (Invitrogen, Karlsruhe, Germany) for 15 min at 37oC. One µg of total RNA 

was used in a 10 µl reaction to synthesize cDNA using Superscript RNaseH Reverse 

Transcriptase (200 U/µg RNA, Invitrogen, Karlsruhe, Germany). Real-time quantitative PCR 

was performed using the CFX Connect detection system (Bio-Rad, Munich, Germany) along 

with the iTaq Universal SYBR Green Real-Time PCR Supermix (Bio-Rad, Munich, 

Germany). The thermal cycling program consisted of initial denaturation in one cycle of 3 

min at 95 °C, followed by 45 cycles of 30 s at 95 °C, 30 s at the individual annealing 

temperature for each primer, and 30 s at 72 °C. Genes selected for expression analysis: UCP-3 

(NM_009464.3), PTHrP (NM_008970.4), MMP12 (NM_008605.3) and ARG2 

(NM_009705.3). Isolation and measurement was previously described [17]. Quantification 

was performed as described before [18]. Data was normalized to hypoxanthine 

phosphoribosyl transferase (HPRT). 

 

2.13 Determination of nitrate and nitrite concentration in plasma 

 The concentrations of nitrite and nitrate were measured by ENO-20 NOx Analyzer 

(Eicom Corporation, Tokyo, Japan), based on the liquid chromatography method with post 

column derivatization with Griess reagent [19]. The plasma samples were precipitated with 

methanol at the ratio of 1:1 (v/v) and subsequently centrifuged at 10,000 x g for 10min. 10µL 

of supernatant was injected into the HPLC system. Nitrite and nitrate were separated on a 

NO-PAK column (4.6μm x 50mm; Eicom). Nitrate was reduced to nitrite by a cadmium-

copper column (NO-RED; Eicom). Nitrite was detected based on the Griess reaction, with 

sulfanilamide and naphthylethylenediamine (both from NO-EBP, Eicom) forming a purple 
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diazo compound (tR= 4.9min for nitrite and 7.8min for nitrate) with UV/Vis detection at 

540nm. 

 

2.14 Flow cytometry of aortic tissue lysates 

 Flow cytometry of aortas was performed like described previously [20, 21]. Briefly, 

aortic vessels were cleaned of fatty tissue, minced and digested with liberaseTM (1mg/ml, 

Roche, Basel, Switzerland) for 30min at 37°C. By passing the lysed aortic fragments through 

a cell strainer (70μm), a single-cell suspension was obtained. Single-cell suspensions were 

treated with Fc-block (anti-CD16/CD32), washed and surface stained with CD45 APC-efluor 

780 (#47-0451-82, 2µg/mL), NK1.1 PE-Cy7 (#25-5941-81, 2µg/mL), F4/80 APC (#17-4801-

82, 4µg/mL) from eBioscience (San Diego, CA) and TCR-β V450 (#560706, 2µg/mL), 

CD11b PE (#553311, 2µg/mL),  Ly6G FITC (#551460, 5µg/mL), Ly6C PerCP-Cy.5.5 

(#560525, 2µg/mL) from BD Biosciences (San Diego, CA). Dead cells were excluded by 

staining with Fixable Viability Dye eFluor506 (#65-0866-14, 1:1000, eBioscience, San 

Diego, CA). Based on a live gate, events were acquired and analyzed using a BD FACS 

CANTO II flow cytometer (Becton Dickinson, Franklin Lakes, NJ) and FACSDiva software 

(Becton Dickinson, Franklin Lakes, NJ), respectively. 
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